S1 Table. Comparison of volumetric energy densities for fused cyclobutanes and petroleum-derived and renewable jet fuels | | Volumetric energy | |--|-------------------| | Compound or fuel | density (MJ/L) | | Cyclobutane, C ₄ H ₈ | 33.0^{a} | | [2]-ladderane, C_6H_{10} | 42.3 ^a | | [3]-ladderane, C_8H_{12} | 46.3 ^a | | [4]-ladderane, $C_{10}H_{14}$ | 49.2 ^a | | [5]-ladderane, C ₁₂ H ₁₆ | 51.4 ^a | | Jet fuel (kerosene) ^b | 35.06° | | Bio-SPK ^b | 33.2 ^b | ^a Calculated using entropies of formation (Novak 2008) and estimated densities from ACD/Labs' PhysChem Suite software Hemighaus, G., et al. (2004) Aviation Fuels Technical Review, Chevron Corporation. Kallio, P., et al. (2014) Renewable jet fuel, Current Opinion in Biotechnology 26, 50-55 Novak, I. (2008) Ring strain in [n]ladderanes, J. Phys. Chem. A 112, 10059-10063. ^b This fuel is the most relevant to commercial aviation in the U.S. Bio-SPK, Bio-Derived Synthetic Paraffinic Kerosene, is a renewable jet fuel in use today (Kallio et al. 2014) ^c From Hemighaus et al. (2004)